
D5: Using a Java Program to do Manual Simulation

Melissa Von Wald, ISAT 341 Spring 2013

Objective

To create a Java program that simulates the system described in D5 Lab.

To be able to read the Java code, write a method, and update the code.

Background

Java is an object oriented programming language. It was originally

developed by James Gosling at Sun Microsystems (now Oracle) in 1995

and today is one of the most popular programming languages. There were

five primary goals when creating Java which reflect why it is so popular

today.

1. Simple, object-oriented, and familiar

2. Robust and secure

3. Architecture-neutral and portable

4. Execute with high performance

5. Interpreted, threaded, and dynamic

Now it is not necessary to understand all these qualities as a first time

programmer but as you get more familiar with Java you can clearly see

the benefit of these characteristics. Object-oriented means that the

programs are structured by objects (instances of classes). Architecture-

neutral means Java applications are compiled to bytecode files that can

be run on any computer with Java Virtual Machine (JVM). This machine

independence makes Java very portable. Interpreted refers to how the

applications are compiled and run. Java is object oriented. All code is

written inside a class. Everything is an object except for primitive data

types (like integer, floating-point, Boolean, and character). An example of

an intro Hello World program is below.

class HelloWorldApp {

 public static void main(String[] args) {

 System.out.println("Hello World!"); // Display the string.

 }

}

Class: How the data is organized.

Public: A keyword that denotes that a method can be called from code

inside other classes.

Static: Static methods are associated only within the class. Static objects

are the same for every instance of a class. Main method is always static

and any variables or methods it accesses must also be static.

Void: In this example the keyword means that the main method does not

return a value.

Main: The method the Java launcher initially calls. Must have an array of

String objects as the parameter (String[] args) and it is usually called

args.

System.out.println : A function that takes a string as the parameter (“Hello

World!”) and outputs that string plus a new line character to the console.

The D5 simulation lab is also a major part of this assignment. The

event chart is shown below. Make sure you understand what each of the

simulation variables and summary statistics are and how to calculate them

by hand. Computer programs can automate processes previously done by

hand. For example, the computer program to simulate D5 takes less than

.001 milliseconds where it would take a student at least 5 minutes to

complete the simulation. However, the computer only does what it is told

to do and it needs to be told exactly what to calculate and print out as

results.

Data Format

For this exercise we will use the chart given in lab D5. The goal of this

exercise is to perform a simple discrete-event simulation with a Java

application. There is computer software that would schedule events, keep

track of impending events, execute those events, update the simulation

clock, and update the system statistics. We are going to create a simpler

version of the software.

The characteristics of the system are the same as in D5 Lab. This system

consists of only one process. Interarrival times and service times are

stochastic. Arrivals and departures will be determined by the random

number streams shown in the chart below. Only one entity can be in the

machine at a time and entities in the queue enter the machine at exactly

the same time entities in the machine are completed (and depart). Arrivals

and departures are to be handled as separate events. If two events are

scheduled to happen at the same time, always do the Departure first

before the Arrival.

Inter-arrival Times Service
Times

6 5

4 1

2 3

5 5

1 1

6 4

2 3

5 5

2 5

3 1

4 6

4 1

6 4

1 5

2 3

6 6

5 6

4 3

2 4

2 2

Code

The code is given in the Simulation.java file. Now we will step through how

to use Eclipse to create and run a Java program.

Open up Eclipse by clicking Start and searching for eclipse. When the

welcome screen appears click on the arrow labeled ‘Go to workbench’.

To create a new Java project go to File -> New -> Java Project. Type in

the Project name: D5_Lab and click Finish. You should now see ‘D5_Lab’

in the ‘Package Explorer’ on the left hand side of the screen.

To create a new Java class, right click on ‘D5_Lab’ -> New -> Class. Type

in the Name: Simulation. Note: It is very important that you name it exactly

‘Simulation’ and it is case sensitive. Click finish and now if you look in the

‘Package Explorer’ on the left hand side of the screen you will see

‘Simulation.java’ listed under ‘(default package)’ under ‘src’ under

‘D5_Lab’.

Now open up the files provided with this lab Simulation.java. Copy and

paste the code into the open files in Eclipse. Note: make sure when you

paste the code you overwrite all the code in the file. There may be yellow

underlines and yellow boxes- those symbolize warnings. There should not

be any angry red underlines or red boxes- those symbolize errors.

Now you are ready to run the simulation. On the top menu bar navigate to

‘Run’ -> ‘Run As’ -> ‘Java Application’. A shortcut is ‘Run’->’Run’ or

Control-F11.

In the console box at the bottom of the screen you will see the output of

the run. The application is formatted so the results appear as they do in

the D5 Manual Simulation Chart.

Outline of the code:

The file contains two classes: Entity and Simulation. Entity is a simple

class with attributes and no methods. Entity objects can be created by the

line Entity a = new Entity() line #83 and the attributes are set and

accessed by the dot operator, for example: a.startTime and a.serviceTime.

 Look inside the class file Simulation. You will first see a list of static

ArrayLists that will hold the data that is printed out at the end of the

program. Then there are four methods/functions. The program begins in

the main method line #342 with the header ‘public static void main(String[]

args)’. Main method calls the function simulation.

Results

Your results should be the same as the results from your D5 lab.

Conclusions

1. How many attributes are in the Entity class?

2. How many functions are in the Simulation class?

3. What does queue.get(0) represent?

4. What does maxQueueLenList.get(maxQueueLenList.size()-1)

represent?

5. How is the requirement “always do the departure before the arrival

expressed in the code?

6. Without changing the code, think about what line(s) of code would you

change if you realized the first entity in our simulation arrives at t=1 not

t=6?

7. Without changing the code, think about what line(s) of code would you

change if you wanted the length of the simulation to be in terms of time

instead of events?

8. What does this if statement mean in the context of our simulation?

if(nextArrival == -1 && nextDeparture == -1)

 return;

If there are no more arrivals scheduled and there are no more items in

the system to depart, then return null which ends the simulation

function.

9. An important part of coding is writing readable code. Throughout the

Java file you will see comments.

Commented lines begin with // comment

Or a commented block is surrounded by /* comment */

Comments help explain confusing parts of the code. Are there any

places that you find would be helpful to have comments to explain the

code? Another part of creating readable code is giving meaningful

variable names. Are there any variables that have names that are

confusing or don’t aid in identifying what the variable holds?

10. Currently the simulation runs correctly and gives the output. A concept

of object-oriented programming is modularity. Modularity is separating

sections of code. For example, the code to format and print the

information to the console is separated in a function called output.

Currently there are 6 lines of code (lines #360-366) to assign the list of

arrival times. There is a blank function calcArrivalTimes. Fill in the

function so if those 6 lines were deleted and line #46 that is

commented out is run, the program runs correctly with no errors.

Other Resources:
Official Site: http://docs.oracle.com/javase/tutorial/

Helpful tutorial: http://computer.howstuffworks.com/program.htm

Overview: http://en.wikipedia.org/wiki/Java_(programming_language

