Multilayer Feedforward Neural Network for Classification

Objective
To design, create, train and use a multilayer feedforward neural network to classify hand-drawn numerals. This example uses the AMORE package, image data from the zip.train dataset available within the ElemStatLearn package. The example uses http://www.statistik.lmu.de/institut/ag//leisch/teaching/fcim11/fcim-beispiele-04-hw.R as well as many of the helper functions developed by Manuel Eugner and Bettina Grün at Ludwig-Maximilians-Universität München.
Background
There are so many people who can, and have, described in great detail the mathematical underpinnings of neural networks. I'm not going to do it myself right now. Try http://media.wiley.com/product_data/excerpt/19/04713491/0471349119.pdf for starters.
Data Format
To access zip.train you will need to install the R package called ElemStatLearn that contains this dataset. From the R menus at the top of your R console screen, go to Packages and navigate down to Install Package(s). Select a CRAN mirror close to your geographical location, and select ElemStatLearn to install. Once the files have been downloaded and unpacked automatically into your R installation, load them up with:
library(ElemStatLearn)
data("zip.train", package = "ElemStatLearn")
Next, let's check to make sure the data loaded properly.
> str(zip.train)

 num [1:7291, 1:257] 6 5 4 7 3 6 3 1 0 1 ...

> is.matrix(zip.train)

[1] TRUE
The str command lets us check the structure of the data. The response from R tells us that we have loaded a matrix of numbers, with rows numbered from 1 to 7291, and columns 1 to 257. Each of the 7291 rows contains a 16 x 16 image consisting of 256 pixels. The first column contains a number that describes what the image represents, and the remaining 256 columns contain pixel intensities, ranging from -1 (lowest intensity) to +1 (greatest intensity) and containing three decimal places of precision. So for example, if the first column contains the number 4, then the remaining 256 columns contain the pixel intensities for an image in which the number 4 appears.
You can use the zip2image command that comes with the ElemStatLearn package to convert each row of zip.train to a 16 x 16 matrix. The comment "digit 6 taken" indicates that these intensities, when plotted, should reveal the number 6.
> zip2image(zip.train, 1)

[1] "digit  6  taken"

        [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]  [,10]  [,11]  [,12]  [,13]

 [1,] -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

 [2,] -1.000 -1.000 -1.000 -0.903 -0.677 -0.630 -0.950 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

 [3,] -1.000 -1.000 -0.452  0.792  1.000  1.000  0.847  0.278 -0.797 -1.000 -1.000 -1.000 -1.000

 [4,] -1.000 -0.483  0.828  1.000  1.000  1.000  1.000  1.000  0.909 -0.257 -1.000 -1.000 -1.000

 [5,] -0.974  0.813  1.000  1.000  0.753  0.068  0.327  0.877  1.000  0.950  0.100 -0.938 -1.000

 [6,] -0.429  1.000  1.000  1.000  0.341 -0.925 -1.000 -0.824  0.300  1.000  1.000  0.540 -0.683

 [7,]  0.304  1.000  1.000  1.000  1.000  0.113 -1.000 -1.000 -0.961 -0.162  0.922  1.000  0.825

 [8,]  0.823  1.000  1.000  0.536  0.707  0.960  0.355 -0.905 -1.000 -1.000 -0.439  0.778  1.000

 [9,]  1.000  1.000  1.000  0.184 -0.942  0.308  1.000  0.145 -1.000 -1.000 -1.000 -0.715  0.562

[10,]  0.482  1.000  1.000  0.812 -1.000 -0.884  0.655  0.977 -0.550 -1.000 -1.000 -1.000 -1.000

[11,] -0.474  1.000  1.000  0.837 -1.000 -1.000 -0.109  1.000  0.485 -0.987 -1.000 -1.000 -1.000

[12,] -0.991  0.219  1.000  0.978  0.545 -0.075 -0.185  1.000  0.996 -0.714 -1.000 -1.000 -1.000

[13,] -1.000 -0.943  0.135  0.864  1.000  1.000  1.000  1.000  0.867 -0.832 -1.000 -1.000 -1.000

[14,] -1.000 -1.000 -1.000 -0.630  0.027  0.641  0.988  0.990  0.092 -1.000 -1.000 -1.000 -1.000

[15,] -1.000 -1.000 -1.000 -1.000 -1.000 -0.995 -0.723 -0.745 -1.000 -1.000 -1.000 -1.000 -1.000

[16,] -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

      [,14]  [,15]  [,16]

 [1,] -1.000 -1.000 -1.000

 [2,] -1.000 -1.000 -1.000

 [3,] -1.000 -1.000 -1.000

 [4,] -1.000 -1.000 -1.000

 [5,] -1.000 -1.000 -1.000

 [6,] -1.000 -1.000 -1.000

 [7,] -0.410 -0.992 -1.000

 [8,]  1.000  0.297 -0.631

 [9,]  0.986  1.000  0.862

[10,] -0.565  0.307 -0.167

[11,] -1.000 -1.000 -1.000

[12,] -1.000 -1.000 -1.000

[13,] -1.000 -1.000 -1.000

[14,] -1.000 -1.000 -1.000

[15,] -1.000 -1.000 -1.000

[16,] -1.000 -1.000 -1.000
Once the row has been extracted and converted to a matrix, you can plot the image using the code below to see what it contains (shown in Figure X.1):

> image(zip2image(zip.train, 1),col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="")
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Figure X.1: The first row of zip.train containing an image of the number 6.
Now cut and paste the Auxiliary Code for Processing at the end of this chapter into your R console window. You'll need some of the functions to proceed. One of them is the plot.digits command, which extracts various numerals and plots them on one panel (Figure X.2) so that you can visually compare different versions of the images:

> plot.digits(zip.train,6)
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Figure X.2: The images from plot.digits(zip.train,6) 
Code and Results
Now it's time to design, train, and use a neural network to classify these images. We will use the R package AMORE, so after you install the package by going to the main menu on the R console, navigating to Packages -> Install package(s) and downloading AMORE, load it into R by typing this:
library(AMORE)
Designing the Neural Network: Next, we will use the newff command in the AMORE package to create the skeleton for our neural network. Basically, at this stage, all we're doing is designing the network. We will use the design to train a classification model afterwards.
net <- newff(n.neurons=c(256, 12, 10),             
learning.rate.global=1e-2,


error.criterium="LMS",


hidden.layer="tansig",


output.layer="sigmoid",

method="ADAPTgd")                     
I'll explain the stuff above line by line. In the first line, we're creating an object called net that will contain the structure of our new neural network. The first argument to newff is n.neurons which allows us to specify the number of inputs, number of nodes in each hidden layer, and number of outputs. So in the example above, there are 256 inputs, 12 nodes in one and only one hidden layer, and 10 outputs. If we wanted to create two hidden layers, one with 8 nodes and the other with 6 nodes, we would write n.neurons=c(256,8,6,10) instead.

Why do we have 256 inputs? Well, we need to account for one input for each of the 256 pixel intensities. Since there are 256 pixels per image, we need to make room for 256 unique inputs. Similarly, we have 10 binary outputs, one for each digit (0 through 9). Our goal is for a "1" (meaning TRUE) to appear at the node that represents the correctly classified digit.
The learning rate constrains just how much we're allowed to change the weights from iteration to iteration as we're training our neural network. So in this case, we're establishing that we can't increase or decrease any one weight in the network by any more than 0.01 from trial to trial.

The error.criterium argument specifies the manner in which you will determine, at each iteration, how close the network is to predicting its target. There are three options here: LMS (for least mean squares), LMLS (for least-mean-logarithm-squared), and TAO (for the Tao error method). I usually use LMS because it works pretty well for many cases. The hidden.layer and output.layer arguments are used to choose the type of activation function you will use to interpret the summations of the inputs and weights for any of the layers in your network. The method tells how you want to approach reducing and minimizing the errors in your network from iteration to iteration. I personally prefer ADAPTgd which stands for "adaptive gradient descent without mmentum". All the possible options are outlined in Table X.1.
	Argument to newff
	What it does

	n.neurons=c(1,3,5,1)
	Defines the architecture of your neural network by setting the number of inputs, neurons in first hidden layer, neurons in second hidden layer, number of outputs - there can be as many hidden layers as you like. The example shows a one input, two hidden layer (first with 3 neurons, second with 5 neurons), one output architecture.

	learning.rate.global=1e-2
	Specifies the maximum amount by which the weights can change between iterations.

	momentum.global=0.5
	You can only use this option if your method is one that takes advantage of the momentum concept. It basically adjusts the learning rate over the iterations to attempt to converge to appropriate weights sooner. I only use this if the errors are not approaching zero and the neural network is not converging to a solution.

	error.criterium="LMS"
	Specifies the technique to use when determining the error between the predicted output and the actual output (LMS = least mean squares, LMLS = least mean logarithm squared, TAO = Tao error)

	hidden.layer="sigmoid"
	Specifies the form of the activation function used to convert the result from the classifier equation into a categorical result (Options are purelin, tansig, sigmoid, hardlim and custom and more information is available in the AMORE documentation)

	output.layer="sigmoid"
	

	Method="ADAPTgd"
	Specifies solution strategy for converging on the weights within the network. My favorite is adaptive gradient descent (ADAPTgd) but this can also be applied with the momentum term included (ADAPTgdwm), as a batch gradient descent (BATCHgd), or as a batch gradient descent with a momentum term (BATCHgdwm).


Table X.1: Optional arguments to newff to customize the design of your neural net
Training the Neural Network: The next thing to do is to actually create the model for our specific neural network, based on the training data that we have available.

m1 <- train(net, zip.train[1:100, -1],



class2prob(zip.train[1:100,1]),



error.criterium="LMS",



report=TRUE,


n.show=10,


show.step=100)
This creates an object called m1 (that stands for "model 1") which contains our trained neural network. I'll step through the arguments one by one. First, we tell train that we want to use the structure that we created in the object that we named net. Next, we give it the inputs defined by zip.train[1:100,-1]. The 1:100 means that we're using the first 100 images in the dataset as our training data, and the -1 is shorthand to tell R "use all the columns". On the next line, we tell train what the answers are for each of those first 100 rows, but we need to give train those answers in a matrix that corresponds to our 10 binary outputs. The class2prob function converts the collection of numbers that represent our answers...
> zip.train[1:100,1]

  [1] 6 5 4 7 3 6 3 1 0 1 7 0 1 1 7 7 4 8 0 1 4 8 7 4 8 7 3 7 4 1 3 6 7 4 1 3 7 7 4 5 4 2

 [43] 7 4 1 3 7 7 4 0 6 3 2 0 8 6 6 2 0 8 7 8 2 0 9 0 2 2 0 8 1 2 0 8 3 3 2 8 2 2 0 8 1 4

 [85] 4 8 9 8 9 6 7 6 1 9 7 0 8 0 4 6

...to the matrix where a "1" appears in the column that contains the answer. I'll show you only the header (or head) from that, so you don't have to see all 100 rows:
> head(class2prob(zip.train[1:100,1]))

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,]    0    0    0    0    0    0    1    0    0     0

[2,]    0    0    0    0    0    1    0    0    0     0

[3,]    0    0    0    0    1    0    0    0    0     0

[4,]    0    0    0    0    0    0    0    1    0     0

[5,]    0    0    0    1    0    0    0    0    0     0

[6,]    0    0    0    0    0    0    1    0    0     0
(Now you'll note that even though the first image contains a 6, there is a 1 in the 7th column of the matrix (under the [,7])! Here's the reason: we're starting with zero as a digit represented by the [,1] column of the matrix. So we're going to have to subtract 1 from the column number if we want to get the number that's actually represented in the image.)
The next arguments (report=TRUE, n.show=10, and show.stop=100) tell the train command to show us the least mean squares results over our neural network for the first 10 iterations after the first 100. Here's what you should see after you enter the command to train m1:
index.show: 1 LMS 0.0296657787415645 

index.show: 2 LMS 0.00922620639364307 

index.show: 3 LMS 0.00707361544924028 

index.show: 4 LMS 0.00649860245140832 

index.show: 5 LMS 0.00567442623628905 

index.show: 6 LMS 0.00502796187644965 

index.show: 7 LMS 0.00416510308941118 

index.show: 8 LMS 0.00338858553170564 

index.show: 9 LMS 0.00294826433718344 

index.show: 10 LMS 0.00270002357042751

The idea is to get this least-mean-square (LMS) error as close to zero as possible. You can try different neural network architectures, train them on your data, and compare the LMS to get a sense of the relative performance of the networks.

All other possible options to train are described in Table X.2.

	Argument to train
	What it does

	net
	Name of the neural network to train. Be sure you use the same variable name that you used when you defined your network with newff.

	P
	Matrix that contains the INPUT data for the training set. It must have the same number of inputs (columns) that you defined in the first number sent to n.neurons in newff!

	T
	Matrix that contains the INPUT data for the training set. It must have the same number of outputs (columns) that you defined in the last number sent to n.neurons in newff!

	report=TRUE
	This tells train to be verbose and to print error terms to the console screen

	n.shows
	Number of error terms to report

	show.step
	Number of iterations to complete before starting to report error terms


Table X.2: Optional arguments to train to customize the training of your neural net
After you train m1, you'd never believe all the data and information about your trained neural network that's hiding just under the surface. One of the things you can do is get access to the variables hidden in the net that you defined and trained:
> names(m1)

[1] "net"    "Merror"
> names(m1$net)

[1] "layers"         "neurons"        "input"          "output"         "target"        

[6] "deltaE"         "other.elements"

Look at all those variables hidden within the net variable - and the net variable is a part of your m1 trained network object! The ones that are the most useful to me are layers (which gives me the index numbers of the neurons in each layer of the network) and neurons (which contains, within itself, information about the weights for each of the connections within your trained neural network).
> net$layers

[[1]]

  [1]   -1   -2   -3   -4   -5   -6   -7   -8   -9  -10  -11  -12  -13  -14  -15  -16  -17  -18  -19

 [20]  -20  -21  -22  -23  -24  -25  -26  -27  -28  -29  -30  -31  -32  -33  -34  -35  -36  -37  -38

 [39]  -39  -40  -41  -42  -43  -44  -45  -46  -47  -48  -49  -50  -51  -52  -53  -54  -55  -56  -57

 [58]  -58  -59  -60  -61  -62  -63  -64  -65  -66  -67  -68  -69  -70  -71  -72  -73  -74  -75  -76

 [77]  -77  -78  -79  -80  -81  -82  -83  -84  -85  -86  -87  -88  -89  -90  -91  -92  -93  -94  -95

 [96]  -96  -97  -98  -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114

[115] -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133

[134] -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152

[153] -153 -154 -155 -156 -157 -158 -159 -160 -161 -162 -163 -164 -165 -166 -167 -168 -169 -170 -171

[172] -172 -173 -174 -175 -176 -177 -178 -179 -180 -181 -182 -183 -184 -185 -186 -187 -188 -189 -190

[191] -191 -192 -193 -194 -195 -196 -197 -198 -199 -200 -201 -202 -203 -204 -205 -206 -207 -208 -209

[210] -210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220 -221 -222 -223 -224 -225 -226 -227 -228

[229] -229 -230 -231 -232 -233 -234 -235 -236 -237 -238 -239 -240 -241 -242 -243 -244 -245 -246 -247

[248] -248 -249 -250 -251 -252 -253 -254 -255 -256

[[2]]

 [1]  1  2  3  4  5  6  7  8  9 10 11 12

[[3]]

 [1] 13 14 15 16 17 18 19 20 21 22

This shows three distinct layers of the network: the input layer [[1]], consisting of 256 inputs (each one the intensity of a pixel), the hidden layer [[2]] with 12 nodes, and the output layer [[3] with 10 outputs. Within each of these layers, we see the node identifiers for each node contained within that layer. For example, the first node in the first hidden layer is 1, the last node in the hidden layer is 12, the first node in the output layer is 13, and the last node in the output layer is 22.

Here are all of the variables that contain information within each neuron, based on what we have access to in the first neuron of the hidden layer (number 1):

> names(net$neurons[[1]])

 [1] "id"                   "type"                 "activation.function"  "output.links"        

 [5] "output.aims"          "input.links"          "weights"              "bias"                

 [9] "v0"                   "v1"                   "f0"                   "f1"                  

[13] "method"               "method.dep.variables"

Each of the 256 inputs in the input layer has a connection to this neuron, the first node in the hidden layer. Consequently, there should be 256 weights contained within net$neurons[[1]]$weights. Let's check:

> net$neurons[[1]]$weights

  [1]  0.0032452535 -0.0120023214 -0.0274787426  0.0110596926  0.0199036611 -0.0244909119

  [7]  0.0187463950  0.0114695513 -0.0293929158  0.0006364439  0.0016229936 -0.0024688326

 [13] -0.0125182747 -0.0125941005 -0.0015407297  0.0208717951 -0.0066552289  0.0107314181

 [19] -0.0077887562 -0.0147484688 -0.0233921439 -0.0063063273  0.0293388548  0.0123541356

 [25]  0.0084496015  0.0231022405  0.0301270610 -0.0277288414  0.0252047480  0.0255399546

 [31]  0.0164231054 -0.0022583819  0.0123364697  0.0084167897 -0.0140787837 -0.0053200797

 [37] -0.0292858710  0.0268570251  0.0208559627  0.0239490995  0.0014219106  0.0212477964

 [43]  0.0262546808 -0.0273666270 -0.0212183152 -0.0048507235 -0.0043549908  0.0119489132

 [49] -0.0160125508  0.0113012417  0.0161602933 -0.0104023446  0.0146897347 -0.0052600061

 [55] -0.0029352731  0.0210693697 -0.0026613203 -0.0202188428  0.0241327761 -0.0075634712

 [61] -0.0249800657 -0.0007871596 -0.0131233458 -0.0086414359 -0.0294701768  0.0171743993

 [67] -0.0018345625 -0.0291750162 -0.0206444843  0.0019573065  0.0283879199 -0.0281576617

 [73] -0.0205660685  0.0154475294  0.0293346168  0.0290332311  0.0294057101 -0.0300864866

 [79]  0.0302739694 -0.0088404264 -0.0039397405  0.0057757472  0.0236466429 -0.0063217601

 [85] -0.0004740045 -0.0095837549  0.0249002928  0.0071123130 -0.0117719455 -0.0074749668

 [91]  0.0128845574 -0.0296661058 -0.0125744350  0.0129941373 -0.0013311232  0.0101305897

 [97] -0.0253130431 -0.0228118887 -0.0109270466  0.0030808477  0.0015476826 -0.0233054479

[103]  0.0241580923  0.0189104409 -0.0193609371 -0.0035266008 -0.0024663688 -0.0213601877

[109] -0.0074897134  0.0074263310  0.0153579773  0.0241694279  0.0038215386 -0.0062107704

[115]  0.0101411840  0.0131096494 -0.0205839154  0.0262086352  0.0034347706 -0.0202874242

[121]  0.0225127144 -0.0272521661 -0.0297479576  0.0182078305  0.0017521849  0.0034055397

[127]  0.0244259584  0.0135350131  0.0221204110  0.0237875844 -0.0188827645 -0.0088843363

[133] -0.0135241171 -0.0224522779  0.0286594763  0.0061319881  0.0154689289 -0.0205130950

[139]  0.0001887119 -0.0184038835  0.0106642854 -0.0099380428  0.0062365518 -0.0009875373

[145]  0.0102807133 -0.0235141796  0.0246300582  0.0070627025 -0.0060748157  0.0111488151

[151]  0.0005774500 -0.0275351753 -0.0037918706 -0.0263058047 -0.0262909911 -0.0188661215

[157] -0.0024207353  0.0190430965 -0.0045628157 -0.0064842457 -0.0284753786  0.0221333659

[163]  0.0023753795 -0.0150632167 -0.0109570450 -0.0185179597 -0.0077267532  0.0139088682

[169] -0.0096706787  0.0104342454 -0.0107486812  0.0090378513  0.0142542356 -0.0026514390

[175]  0.0167613725 -0.0102568400 -0.0237357111  0.0278816593  0.0177815412 -0.0098697464

[181]  0.0230233521 -0.0198390105  0.0286889117 -0.0176861439  0.0282045576  0.0245066425

[187]  0.0170557185  0.0050402230  0.0107197830  0.0092211143  0.0026890643 -0.0184357764

[193]  0.0017287842  0.0112930187  0.0262836140 -0.0148786062  0.0003284122  0.0201906616

[199]  0.0043576982  0.0101711561  0.0035018383  0.0050467005 -0.0029427453  0.0282957450

[205] -0.0095773700 -0.0147374393  0.0084189777  0.0265506205  0.0238316625  0.0104344486

[211]  0.0003063487  0.0276516198 -0.0177404955  0.0186120762  0.0212675725 -0.0097014746

[217]  0.0016271660 -0.0273415848 -0.0183311742 -0.0132531360  0.0150987677 -0.0230472075

[223] -0.0143584875 -0.0186127271  0.0079585125  0.0280683429  0.0166197564  0.0236633247

[229] -0.0047684828  0.0244050333 -0.0108493151 -0.0304461101 -0.0182190380 -0.0250453335

[235]  0.0067607871 -0.0158014044 -0.0300095995  0.0300275689  0.0059941728 -0.0241741390

[241] -0.0217175957 -0.0113700123 -0.0012744463  0.0026303866  0.0092113205  0.0263978678

[247] -0.0248665906  0.0175188723  0.0114087444  0.0046576247 -0.0290600505 -0.0258709654

[253] -0.0263489747 -0.0119987413 -0.0200303558 -0.0035703558

Sure enough, there is one weight reported from each input to this first node in the hidden layer. You can access all the weights in the network using similar notation. For example, neuron number 13 is the first neuron in the output layer. It should get information from each of the 12 nodes in the hidden layer, but none of the nodes in the input layer. We can check:

> net$neurons[[13]]$weights

 [1] -0.021902991 -0.007114381  0.016335452  0.004506039  0.008177628 -0.022031065 -0.025300735

 [8]  0.015350140  0.013454334  0.004505842 -0.020787414 -0.021999577

How Well Does the Network Perform? Now we can use the sim command in conjunct with our trained neural network m1 to guess which number has been drawn, given the inputs of 256 pixel intensities:
> sim(m1$net,zip.train[1:10, -1, drop=FALSE])

              [,1]         [,2]         [,3]         [,4]         [,5]        [,6]        [,7]

 [1,] 0.0465243982 0.0007133492 0.0348080950 0.0104151574 0.0242284358 0.013606427 0.933312753

 [2,] 0.0174354813 0.0178320381 0.0552094592 0.0372497061 0.0001219083 0.010647664 0.005822756

 [3,] 0.0075056815 0.0298449129 0.0009961734 0.0009846682 0.9489215053 0.018333341 0.052988688

 [4,] 0.0011690862 0.0058856809 0.0138836543 0.0143231253 0.0006337253 0.013566092 0.009386368

 [5,] 0.0092419007 0.0275836707 0.0242982328 0.9412778568 0.0001031173 0.016279908 0.010021275

 [6,] 0.0511845139 0.0006262210 0.0585623392 0.0113113461 0.0236058258 0.014696331 0.894713775

 [7,] 0.0064494779 0.0219515127 0.0186594421 0.9313778157 0.0001794259 0.015853759 0.014358284

 [8,] 0.0002987172 0.9300222192 0.0197383503 0.0179396065 0.0177293420 0.009869374 0.001420167

 [9,] 0.9555477537 0.0008692564 0.0021445588 0.0115854559 0.0070402606 0.019890305 0.072970609

[10,] 0.0003138064 0.9257077011 0.0262500987 0.0141524250 0.0192701362 0.009750322 0.001651312

             [,8]         [,9]       [,10]

 [1,] 0.007312455 0.0016824623 0.006202909

 [2,] 0.037966980 0.0122579567 0.022533723

 [3,] 0.002669500 0.0197902056 0.075586660

 [4,] 0.948337202 0.0075914368 0.060620554

 [5,] 0.009292063 0.0187299132 0.088268573

 [6,] 0.007383697 0.0027654012 0.007314256

 [7,] 0.009005413 0.0213862510 0.086758649

 [8,] 0.006978174 0.0005640695 0.056541393

 [9,] 0.005404737 0.0020885934 0.030312408

[10,] 0.005346397 0.0006284897 0.049211887

Each row contains the probability that the image matches the digit that is represented by the column. For example, the 7th row represents the 7th image in our collection. (If you want to go back and plot that image, just use image(zip2image(zip.train, 7),col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="") and you'll be able to see that it indeed looks like a zero.)
We can use max.col to figure out the column number of the biggest probability, and then we can subtract one from that column number to get the actual number that the neural network predicts is contained within our image!
> max.col(sim(m1$net,zip.train[1:10, -1, drop=FALSE]))-1

 [1] 6 2 4 7 3 6 3 1 0 1
What this means is that neural network m1 predicts that our first image is a 6, our second is a 2, our third is a 4, and so on. But there are lots of images in our database! We can find out how many:
> length(zip.train[,1])

[1] 7291

With 7291 images in our data set, we need to find a better way to determine how accurately the trained neural network m1 is able to classify our values. Here's one way to do it. First, we mash together two columns of data using cbind (or "column bind"). The first column represents the predicted values, and the second column represents the target (or known) values:

compare <- cbind(max.col(sim(m1$net,zip.train[1:7291, -1, drop=FALSE]))-1,zip.train[,1])

So you can see better which column is which, the bold values are what have been predicted by the neural network, and the italics show the target (or known) values:

compare <- cbind(max.col(sim(m1$net,zip.train[1:7291, -1, drop=FALSE]))-1,zip.train[,1])

Next, we create a data frame out of our predicted and actual (target) values, and use the names command to make sure we label them appropriately. We can use the head command to inspect the first few elements of the new data frame that compares our neural network's prediction with what we know the number was:
> compare.df <- data.frame(compare)

> names(compare.df) <- c("predicted","actual")

> head(compare.df)

  predicted actual

1         6      6

2         2      5

3         4      4

4         7      7

5         3      3

6         6      6

Finally, let's create a blank vector where we can store our prediction results:

a <- rep(NA,nrow(compare.df))

We can now check whether each one of our 7291 images has been correctly or incorrectly classified:

for (n in 1:nrow(compare.df)) {


a[n] <- ifelse(compare.df$predicted[n]==compare.df$actual[n], 
"CORRECTLY CLASSIFIED", "INCORRECTLY CLASSIFIED")

}
> table(a)

a

  CORRECTLY CLASSIFIED INCORRECTLY CLASSIFIED 

                  5426                   1865

A total of 74/4% (5426/7291) of our images have been correctly classified using this particular execution of this neural network.

Using the Trained Neural Network to Classify New Examples: Now cut and paste the Auxiliary Code for Drawing Numerals at the end of this chapter into your R console window. You'll need some of the functions to proceed, and here's where things get really fun. First, let's see if we can use our neural network to correctly classify one of the images already in the data set. (The [1] 0 result means that m1 thinks we are looking at a zero!)
> max.col(sim(m1$net,zip.train[9, -1, drop=FALSE]))-1

[1] 0
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Figure X.3: The 9th row of zip.train containing an image of zero created using image(zip2image(zip.train,9),col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="")
It worked!

Now let's draw a NEW number and see if our m1 neural network can classify it:
> hwd <- hwcanvas()

Zum Beenden in die rechte obere Ecke klicken!
This will launch a new graphics window in R. Because the code was originally written by professors in Germany, the instructions are in German! You are being asked to click your mouse, draw a new number in the graphics window, and click on the upper right hand corner square in the graphics window to store your image. (Be careful not to hit the edges when you draw because this will produce an error.)
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Figure X.4: The very exciting number I drew into the window launched by hwcanvas()

Next, we ask the m1 neural network to classify what we just drew:

> max.col(sim(m1$net, image2zip(hwd)))-1

[1] 1
It thinks we drew a one. It's right!

Auxiliary Code for Processing
The following helper functions need to be loaded into R to facilitate processing:
# ziphelpers.R

# from http://www.statistik.lmu.de/institut/ag//leisch/teaching/fcim11/fcim-beispiele-04-ziphelpers.R
class2prob <- function(x) {

  x <- as.factor(x)

  p <- matrix(0, nrow = length(x), ncol = nlevels(x))

  p[cbind(seq_len(nrow(p)), as.integer(x))] <- 1

  p

}
scale <- function(x) {

    rx <- range(x)

    rt <- c(0, 2)

    scale <- (rx[2] - rx[1]) / (rt[2] - rt[1])

    x2 <- rt[1] + ((x - rx[1]) / scale)

    (x2 - 1)

}

as.zipimage <- function(x) {

    raster <- x$bitmap

    raster16 <- matrix(NA, 16, 16)

    for ( i in 1:16 ) {

        ii <- seq((((i - 1) * 10) + 1), (i * 10))

        for ( j in 1:16 ) {

            jj <- seq((((j - 1) * 10) + 1), (j * 10))

            raster16[i, j] <- mean(raster[ii, jj])

        }

    }

    raster16 <- scale(raster16)

    structure(list(vector=x$vector,

                   bitmap=structure(raster16, class='bhwdigit')),

              class='hwdigit')

}

image2zip <- function(x) {

    matrix(as.numeric(x), nrow=1)

}

find.digits <- function(zip, n, digits=0:9) {

    structure(lapply(digits,

                     function(i)

                     sample(which(zip[,1] == i), n)),

              names=digits)

}

plot.digits <- function(zip, n, ...) {

    rows <- find.digits(zip, n)

    digits <- lapply(rows,

                     function(row)

                     do.call(cbind,

                             lapply(row,

                                    function(r) zip2image(zip, r))))

    im <- do.call(rbind, digits)

    image(im, col=gray(256:0/256), zlim=c(0,1), xlab='', ylab='')

}
Auxiliary Code for Drawing Numerals
The following helper functions need to be loaded into R to input new test cases for your trained neural network to classify. This is from: http://www.statistik.lmu.de/institut/ag//leisch/teaching/fcim11/fcim-beispiele-04-hw-canvas.R
plot.canvas <- function() {

    plot(0:16, 0:16, type="n", xaxs="i",

         yaxs="i", xlab="", ylab="")

    grid(16, 16)

}

drawing.canvas <- function() {

    mousedown.event <- function(buttons, x, y) {

        if ( x > 0.85 && y > 0.85 )

            return("Done")

        NULL

    }

    mouseup.event <- function(buttons, x, y) {

        released <<- TRUE

        segments <<- c(segments, n)

        NULL

    }

    mousemove.event <- function(buttons, x, y) {

        if ( length(buttons) > 0 ) {

            n <<- n + 1

            plx <- grconvertX(x, "ndc", "user")

            ply <- grconvertY(y, "ndc", "user")

            points <<- rbind(points, c(plx, ply))

            if ( !released )

                ix <- c(n, n-1)

            else

                ix <- n

            lines(points[ix, 1],

                  points[ix, 2], lwd=50)

            plxr <- round(plx * 10, 0)

            plyr <- round(ply * 10, 0)

            raster[as.matrix(expand.grid(seq(plxr - raster.radius,

                                         plxr + raster.radius),

                                         seq(plyr - raster.radius,

                                         plyr + raster.radius)))] <<- 1

            released <<- FALSE

        }

        NULL

    }

    released <- TRUE

    points <- matrix(NA, ncol=2, nrow=0)

    raster <- matrix(0, ncol=160, nrow=160)

    raster.radius <- 7

    n <- 0

    segments <- NULL

    plot.canvas()

    getGraphicsEvent("Zum Beenden in die rechte obere Ecke klicken!",

                     onMouseDown=mousedown.event,

                     onMouseMove=mousemove.event,

                     onMouseUp=mouseup.event)

    structure(list(vector=structure(points, segments=segments, class="vhwdigit"),

                   bitmap=structure(raster, class="bhwdigit")),

              class="hwdigit")

}

plot.vhwdigit <- function(x, ...) {

    plot.canvas()

    segments <- unique(c(0, attr(x, "segments"), nrow(x)))

    for ( i in 1:(length(segments) - 1) )

        lines(x[seq(segments[i]+1, segments[i+1]),], lwd=50)

}

plot.bhwdigit <- function(x, ...) {

    n <- nrow(x)

    image(x=0:n, , y=0:n, z=x,

          xlim=c(0, n), ylim=c(0, n), zlim=c(0, 1),

          xaxs="i", yaxs="i", xlab="", ylab="",

          col=gray(256:0/256))

    grid(n, n)

    box()

}

plot.hwdigit <- function(x, ...) {

    par(mfrow=c(1, 2))

    plot(x$vector, ...)

    plot(x$bitmap, ...)

}

hwcanvas <- function(full=FALSE) {

    x <- as.zipimage(drawing.canvas())

    if ( full )

        x

    else

        x$bitmap

}

Conclusions
Wasn't that fun? Now you know how to design, train, and use a multilayer feedforward neural network with the R package AMORE that takes a matrix as a training set. Now, see if you can improve the performance of the neural net by changing the architecture and/or expanding the training set.
Other Resources:

· http://en.wikipedia.org/wiki/Feedforward_neural_network 
· http://127.0.0.1:28373/library/AMORE/html/newff.html - documentation for the newff command within AMORE
· http://rwiki.sciviews.org/doku.php?id=packages:cran:amore -- this contains the absolute BEST documentation for the AMORE package that I've seen
· http://media.wiley.com/product_data/excerpt/19/04713491/0471349119.pdf -- textbook chapter from Simon Haykin

· http://www.roguewave.com/Portals/0/products/imsl-numerical-libraries/c-library/docs/6.0/stat/default.htm?turl=multilayerfeedforwardneuralnetworks.htm
