Performance Measures for Classifiers

Objective
To construct a confusion matrix, compute the precision, recall, and f1 scores for a classifier, and to construct a precision/recall chart in R to compare the relative strengths and weaknesses of different classifiers.
Background
Classifiers can be developed using many techniques, such as neural networks, logistic regression, heuristics, decision trees, and Bayesian methods. Because classifiers can be developed in so many ways, and using so many different combinations of parameters and architectures, it can be useful to compare the performance of classifiers to see which one works better in practice.
· True positives (TP) - We predicted that a certain outcome would be true, and indeed it was
· False positives (FP) - We predicted that an outcome would be true, but it was really false, giving us an unexpected result or a false detection. This is the equivalent of Type I (alpha) errors in statistics (e.g. convicting an innocent person, or a pregnancy test that's positive when in fact you're not pregnant)
· False negatives (FN) - We predicted that an outcome would be false, but it really turned out to be true, giving us a missing result or a non-detection. This is the equivalent of Type II (beta) errors in statistics (e.g. not convicting a guilty person; a pregnancy test that says you're not pregnant, when in fact you are).
· True negatives (TN) - We predicted that a certain outcome would be false, and indeed it was.
The first step before you start computing parameters or plotting them to see which classifier is the best is to develop a confusion matrix (Figure X.1). This is a contingency table containing two categorical variables: the actual state of the item classified (in this case, was it really spam or really not spam), and the predicted state of the item as determined by the classifier (that is, did the classifier think it was spam, or think it was not spam).
	
	really is spam
	really is not spam

	spam test is positive
	91

(true positives - TP)
	1

(false positives - FP)

	spam test is negative
	18

(false negatives - FN)
	110

(true negatives - TN)

Figure X.1: Confusion matrix created using made-up data from spam and not-spam email classifiers. Each cell of the table contains counts of how often the situation was observed.
Using the counts of each of these occurrences from our contingency table, we can compute precision, recall, or the f1 score (a combination of precision and recall):
· Precision (P) - How many classifications did you get right based upon the number of attempts you made? P = TP / (TP + FP)
· Recall (R) - How many classifications did you get right compared to the total number of correct classifications you could have made? R = TP / (TP + FN)
· F1 - This score combines P and R into one measure that can be used to evaluate the overall performance of the classifier, rather than having to evaluate the trade-offs between precision and recall. F1 = (2 x P x R) / (P + R)
The concepts of precision and recall come from attempts to characterize the quality of a search or information retrieval (IR) system. Given that you have a corpus of documents (Step 1), a query is posed to that corpus to retrieve appropriate results (Step 2). The IR system obtains a result set containing the retrieved information (Step 3), and then applies some sort of algorithm to sort or rank the results to enhance the quality of the presentation (Step 4). A confusion matrix for an information retrieval system is shown in Figure X.2.

A perfect information system will have 100% precision (meaning that when the classifier says a document is relevant, it is guaranteed to be relevant) in addition to 100% recall (the classification mechanism successfully identifies all relevant documents, even if it casts a wide net and catches several irrelevant documents as well).
	
	in result set
	not in result set

	document is relevant
	# accurately obtained docs (TP)
	# failures to detect relevant info (FN)

	document is not relevant
	# docs erroneously retrieved (FP)
	# accurately ignored docs (TN)

Figure X.2: Confusion matrix for a typical search/information retrieval (IR) system
The precision/recall chart that we will produce will have f1 contour lines that can be used as a guide to determine which classifiers are better or worse than one another.

Data Format
This example doesn't use the most elegant code, but it works, and you can use it to construct your own precision/recall charts. As an exercise, you could convert this code to use a data frame, which would be much more efficient.
initialize the ordered lists
tp <- 0
fp <- 0
tn <- 0
fn <- 0
TP, FP, TN and FN for our first classifier

tp[1] <- 290

fp[1] <- 210

tn[1] <- 442

fn[1] <- 58

TP, FP, TN and FN for our second classifier

tp[2] <- 471

fp[2] <- 29

tn[2] <- 409

fn[2] <- 91

TP, FP, TN and FN for our third classifier

tp[3] <- 120

fp[3] <- 380

tn[3] <- 110

fn[3] <- 390

TP, FP, TN and FN for our fourth classifier

tp[4] <- 388

fp[4] <- 112

tn[4] <- 499

fn[4] <- 1
Add data for as many more classifiers as you'd like

set the number of classifiers

num.cl <- length(tp)

You can also mash them into a data frame with all.counts <- cbind(tp,fp,fn,tn).
Code and Results
(The lines of code used in this section to initialize the chart and draw the f1 contours come from http://www.dfki.uni-kl.de/~grimnes/2009/06/fmeasure/fmeasurePlot.R.)
Next, load the functions below into R by cutting and pasting them into the console. They are used to compute precision, recall, and f1 for any combination of counts. Even though they do not require counts from all four cells of the confusion matrix, I've written the functions to take all four inputs just so we can keep track of the full dataset going in:
precision <- function(tp,fp,fn,tn) {

 x <- tp/(tp+fp)

 return(x)

}

recall <- function(tp,fp,fn,tn) {

 x <- tp/(tp+fn)

 return(x)

}

f1 <- function(precision,recall) {

 x <- (2 * precision * recall) / (precision + recall)

 return(x)

}

Now we can initialize three arrays to store the computed values for precision, recall, and f1, which will ultimately go into the plot. Once they are initialized, we cycle through the number of classifiers we are evaluating to perform the computations and create a precision/recall data frame (pr.df) containing the results:
my.precisions <- rep(NA,num.cl)

my.recalls <- rep(NA,num.cl)

my.f1s <- rep(NA,num.cl)

for (n in 1:num.cl) {

 my.precisions[n] <- precision(tp[n],fp[n],fn[n],tn[n])

 my.recalls[n] <- recall(tp[n],fp[n],fn[n],tn[n])

 my.f1s[n] <- f1(my.precisions[n],my.recalls[n])

}

pr.df <- cbind(my.precisions,my.recalls)

Next, we create the canvas for our precision/recall plot:

this sets up the graph

curve(1000+1000*x, xlim=c(0,1), ylim=c(0.0,1),xlab="Precision",ylab="Recall")

this draws the f1 contour curves

for(f in seq(0.1,0.9,0.1)) {

 curve(f*x/(2*x-f), f/2,1.1, add=TRUE, n=1000, col="lightgrey")

 text(1,f/(2-f), label=sprintf("f=%.1f",f), pos=1, col="grey")

}
The following code will plot one point for each classifier on the chart, using a different plotting character (pch) for each point, starting with the character whose ID is 21.

points(pr.df, bg=rainbow(num.cl), col="black",

pch=21:(21+num.cl), cex=2)

It is useful to be able to label the points on the precision/recall plot so you can tell which classifier each point is referring to. Labeling the points in a straightforward way requires that we install the calibrate package from Packages -> Install package(s) and then load it into memory so we can use the textxy command to label the plot:

library(calibrate)

for (n in 1:nrow(pr.df)) {

 textxy(my.precisions[n],my.recalls[n],n,cx=1.5)

}
Instead of just plotting the classifier number on the plot, we can also plot longer descriptions, as long as we set them up first. (Before you do this, be sure to use the code above to re-draw the canvas, otherwise your descriptions will be plotted on top of the numbers you plotted previously.) The cx argument increases or decreases the size of the labels. The plot is shown in Figure X.2 below.
#or you can give them descriptions too:

description <- rep(NA,num.cl)

description[1] <- "NN1"

description[2] <- "NN2"

description[3] <- "LOG REG"

description[4] <- "BAYES"

for (n in 1:nrow(pr.df)) {

 textxy(my.precisions[n],my.recalls[n],description[n],cx=1)

}
[image: image1.png]Recall

1.0

0.8

0.6

04

0.2

0.0

LOG REG
<@

NN1

A BAYES

NN2

0.0

0.2

T
0.4

Precision

T
0.6

0.8

1.0

Figure X.2: Precision/recall chart showing that BAYES and NN2 are comparable.
Conclusions
With the examples you have just completed, you should be able to enter counts of true positives, false positives, false negatives, and true negatives, and be able to plot precision/recall charts and compare alternatives to see which classifier is best. The classifiers that fall in higher F1 regimes are typically the higher quality classifiers, but sometimes you will need to qualitatively assess whether precision (sensitivity) or recall (specificity) are more important to you in the context of your problem.
In addition, any of the measures that can be derived from the confusion matrix (such as http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html) can be used as the basis for improvement activities.
Other Resources:

· http://en.wikipedia.org/wiki/Confusion_matrix
· http://en.wikipedia.org/wiki/Precision_and_recall - includes information about the f1 measure
· http://en.wikipedia.org/wiki/Sensitivity_and_specificity
· http://en.wikipedia.org/wiki/F1_score
· http://en.wikipedia.org/wiki/Type_I_and_type_II_errors - the confusion matrix is closely related to Type I (alpha) and Type II (beta) errors in statistics
· http://www.h5.com/solutions/h5-trec-results - notes for interpreting the precision-recall chart
· http://uberpython.wordpress.com/2012/01/01/precision-recall-sensitivity-and-specificity/ - precision/recall vs. sensitivity/specificity (used in medical fields)
· http://cran.r-project.org/web/packages/rocplus/vignettes/rocplus.pdf - ROC and precision/recall package in R
